
A hybrid finite difference-finite
element method for solving
the 3D energy equation
in non-isothermal flow

past over a tube
A. Arefmanesh

Department of Mechanical Engineering, Islamic Azad University,
Tehran, Iran, and

M.A. Alavi
Islamic Azad University, Tehran, Iran

Abstract

Purpose – This paper aims to develop a hybrid finite difference-finite element method and apply it to
solve the three-dimensional energy equation in non-isothermal fluid flow past over a tube.

Design/methodology/approach – To implement the hybrid scheme, the tube length is partitioned
into uniform segments by choosing grid points along its length, and a plane perpendicular to the tube
axis is drawn at each of the points. Subsequently, the Taylor-Galerkin finite element technique is
employed to discretize the energy equation in the planes; while the derivatives along the tube are
discretized using the finite difference method.

Findings – To demonstrate the validity of the proposed numerical scheme, three-dimensional test
cases have been solved using the method. The variation of L 2-norm of the error with mesh refinement
shows that the numerical solution converges to the exact solution with mesh refinement. Moreover,
comparison of the computational time duration shows that the proposed method is approximately
three times faster than the 3D finite element method. In the non-isothermal fluid flow around a tube for
Re ¼ 250 and Pr ¼ 0.7, the results show that the Nusselt number decreases with the increase in the
tube length and, for the tube length greater than six times the tube diameter, the average Nusselt
number converges to the value for the two-dimensional case.

Originality/value – A hybrid finite difference-finite element method has been developed and applied
to solve the 3D transient energy equation for different test cases. The proposed method is faster, and
computationally more efficient, compared with the 3D finite element method.
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Paper type Research paper

1. Introduction
Fluid flow over tube banks and their heat transfer analysis have many important design
applications for boilers, various kinds of heat exchangers, and chemical and nuclear
reactors. In recent years, several two-dimensional experimental as well as numerical
studies of the fluid flow over tube banks have been conducted (Launder and Massey,
1978; Chen et al., 1986). However, under certain circumstances, the two-dimensional
assumption is not considered accurate enough any more, and a full three-dimensional
analysis becomes very attractive. The fin-tube heat exchanger shown in Figure 1 is
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a typical example. To analyze the heat transfer in this heat exchanger, the
three-dimensional Navier-Stokes and energy equations should be solved.

Several three-dimensional numerical simulations of fluid flow and heat transfer have
been attempted in recent years. Morton and Tony (1997) solved the three-dimensional
Navier-Stokes equations employing a compact mixed-order finite element method.
Cairncross et al. (2000) and Baer et al. (2000), in two consecutive articles, introduced a
finite element scheme to predict the free surface flow of incompressible fluids in the
three-dimensional cases. More recently, a three-dimensional velocity-vorticity weak
form finite element algorithm for solving the Navier-Stokes equations has been
developed by Wong and Baker (2002). In a very recent study, Tiwari and Biswas (2003)
have conducted a three-dimensional numerical investigation of the fluid flow and heat
transfer in a rectangular channel with a built-in circular tube. They used the finite
volume method and carried out their calculations for moderate Reynolds numbers.

To circumvent the difficulties corresponding the three-dimensional mesh generation,
hybrid numerical schemes have attracted much attention in recent years. Mashayek and
Ashgriz (1995) combined the finite element and the finite volume methods in a hybrid
scheme to simulate free surface flows and interfaces. Zhang and Dalton (1998) carried
out a three-dimensional simulation of a steady approach flow past a circular cylinder at
low Reynolds numbers using a hybrid finite difference-spectral element method. Among
other hybrid techniques, one can mention a hybrid three-dimensional finite
difference-finite element scheme developed by Chen (1998) to analyze seismic wave
induced fluid-structure interaction of a vertical cylinder. In a recent paper, Passoni et al.
(2002) have employed a hybrid spectral element-finite difference method to analyze the
hydrodynamic stability theory of linear and nonlinear Navier-Stokes equations.

Although the above-mentioned numerical methods for solving the appropriate
three-dimensional problems have proven conventionally implemental, for
multi-dimensional complex cases where computational time duration becomes a
factor, or in cases where results verifications seem determinative, offering a new
approach is prominent.

2. Methodology
In this study, a hybrid finite difference-finite element scheme is developed to solve the
transient energy equation in the three-dimensional, non-isothermal fluid flow passing
over a circular tube located in a channel. The proposed hybrid scheme is based on
discretizing the energy equation by employing the finite difference and the finite
element methods along and perpendicular to the tube axis, respectively. To implement
the hybrid technique, the tube length is partitioned into m uniform segments by
choosing m þ 1 equally-spaced grid points in the range of 0 , z # H, H being the
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tube length, and a plane perpendicular to the tube axis is drawn at each of the grid
points. The distance between any two consecutive planes is denoted by Dz (Figure 2).
Subsequently, a two-dimensional finite element mesh, consisting of three-noded
triangular elements is generated in these planes. Owing to symmetry, the finite element
mesh is identical for all the planes. A hybrid three-dimensional mesh is then generated
via connecting the nodes of similar triangular elements in different planes by lines
parallel to the tube axis (Figure 2).

In order to calculate the temperature distribution, a finite element-based
Navier-Stokes equation solver is first utilizied to solve for the flow field. Having
obtained the velocity distribution, a two-dimensional Taylor-Galerkin finite element
scheme is employed to discretize the energy equation in the planes perpendicular to the
tube axis. The derivatives with respect to the z-coordinate, i.e. the derivatives along
the tube axis, in the resulting semi-discretized equations are then replaced by the finite
difference quotients, establishing the hybrid finite difference-finite element scheme.

The transient continuity, momentum, and energy equations for the
three-dimensional, incompressible, laminar flow of a Newtonian fluid in a
dimensionless form are, respectively, given by:

7:V ¼ 0 ð1Þ

DV

Dt
¼ 27P þ

1

Re
72V ð2Þ

Du

Dt
¼

1

Pe
72u ð3Þ

where, V 5 (u, v, w) is the dimensionless velocity vector, t is the dimensionless time, P
is the dimensionless pressure, Re is the Reynolds number, u is the dimensionless
temperature, and Pe is the Peclet number. The dimensionless variable are difined as
follows:

Figure 2.
A hybrid 3D mesh
generated in the
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Pe ¼
rCpU1D

k
; Re ¼

rU1D

m
; X ¼

X

D
; P ¼

P

rU 2
1

; t ¼
�tU1

D
;

u ¼
T 2 T1

Tw 2 T1

; V ¼
V

U1

ð4Þ

where, r is the fluid density, Cp is its specific heat, U1 is the free-stream velocity, D is
the tube diameter, k is the fluid thermal conductivity, m is its viscosity, X is the
dimensionless coordinate vector, X is the coordinate vector, P is the pressure, �t is the
time, T is the temperature, T1 is the free-stream temperature, Tw is the wall
temperature, and V is the velocity vector.

The computational domain, and the boundary conditions for the problem are shown
in Figure 3. The tube is confined between the top and bottom walls with H being the
distance between them. The side-walls are planes of symmetry between the tubes in a
tube bundle. The distance between these walls, B, is four times the tube diameter, D.
The tube axis is located at a distance equal to 3D from the input plane, i.e. from the y-z
plane. The length of the computational domain in the x-direction, L, (which should be
long enough for the fully-developed boundary conditions to be applicable at the outlet
plane) is set to be equal to 12D. This length has been selected in accordance with the
published results in the work done by Tezduyar and Shih (1991).

In this work, the no-slip assumption, and the boundary conditions T ¼ Tw are
imposed at the tube surface and along the top and bottom walls. At the input plane,
the velocity and the temperature are set equal to the free-stream velocity, U1, and the
free-stream temperature, T1, respectively. At the outlet plane, which is located far
enough downstream from the tube for the flow to be fully-developed, the derivatives of
velocity and temperature in the x-direction are considered to be zero. Owing to
symmetry, the y-derivatives of all the dependent variables and also the y-component of
the velocity vector are set equal to zero along the side-walls. Moreover, a reference value
of zero is prescribed for the pressure at the outlet plane. The initial conditions are:

VðX; 0Þ ¼ 0 ð5Þ

uðX; 0Þ ¼ 0: ð6Þ

Figure 3.
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The mathematical model of the problem is expressed by the coupled system of equations
(1)-(3), the initial conditions (5) and (6), and the aforementioned boundary conditions
shown in Figure 3.

3. Numerical modeling
Before solving the energy equation, the flow field has to be established. A finite
element-based Navier-Stokes equation solver is employed for this purpose. A mesh
consisting of four-noded tetrahedral elements is used to solve for the flow field. The
velocity field is approximated within four-noded tetrahedral elements using linear
shape functions, and the pressure is considered to be piecewise constant within the
elements (Heinrish and Pepper, 1999). Substituting these approximations into the
Petrov-Galerkin weighted residual weak form of the Navier-Stokes equations and
discretizing the time derivatives result in a coupled system of nonlinear algebraic
equations for the unknown nodal pressure and velocity components (Heinrish and
Pepper, 1999; Brooks and Hughes, 1982). The solution of the system of equations yields
the pressure and velocity distributions in the computational domain at each time step.

The equation of energy, equation (3), is discretized using the proposed hybrid
method. In this method, a two-dimensional finite element technique with three-noded
triangular elements is employed to discretize the equation in the planes perpendicular
to the tube axis, i.e. x-y planes (Figure 2). Subsequently, the resulting semi-discretized
ordinary differential equations are discretized using the finite difference method along
the tube axis, i.e. in the z-direction. Since, utilizing the Galerkin finite element method in
the x-y planes yields oscillatory solutions for high Peclet numbers, an upwinding
scheme is employed to obtain stable solutions. In this study, the Taylor-Galerkin
technique, which is suitable for the transient cases, is utilized for this purpose. To
implement this technique, a second-order-accurate truncated Taylor series of
temperature with respect to time in the dimensionless form is written as:

unþ1 ¼ un þ Dt
›un

›t
þ

Dt 2

2

›2un

›t 2
ð7Þ

where n and n þ 1 represent two consecutive time steps. The first and second
derivatives of temperature with respect to time in the above equation are written using
equation (3) as:

›u

›t

n

¼ 2V:7un þ
1

Pe
72un ð8aÞ

›2u

›t 2

n

¼ 2
›V n

›t
:7un 2 ðVn:7Þ

›un

›t
þ

1

Pe
72 ›un

›t

� �
: ð8bÞ

Substituting expressions (8a) and (8b) into equation (7), and replacing ð›un=›tÞ by
ððunþ1 2 unÞ=DtÞ in the resulting equation, yield the following time-discretized form of
the energy equation (Usmani et al.,1992; Arefmanesh and Afkhami, 2001):

1

Dt
2

1

2Pe
72

� �
unþ1 ¼

1

Dt
þ

1

2Pe
72 2 Vnþð1=2Þ:7þ

Dt

2
ðVn:7ÞðVn:7Þ

� �
un: ð9Þ
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Subsequently, the Galerkin finite element method is employed to discretize equation (9)
in the x-y planes. For this purpose, the dimensionless temperature is approximated
within a typical three-noded triangular element, Ve, of the two-dimensional mesh
(Figure 2) using the following linear interpolation:

�u ðeÞðx; y; z; tÞ ¼
X3

i¼1

N ðeÞ
i ðx; yÞuðeÞi ðz; tÞ ð10Þ

where, �u ðeÞ is the linear approximation of the dimensionless temperature, and N ðeÞ
i and

u
ðeÞ
i ; for i ¼ 1-3, are the usual linear shape functions (Heinrish and Pepper, 1999) and

the nodal values of the dimensionless temperature, respectively. The Galerkin
weighted residual formulation of the problem is then obtained by multiplying equation
(9) with the shape functions and setting the integral of the resulting expressions over
the element equal to zero as shown in the following equation:

Z
Ve

1

Dt
2

1

2Pe
72

� �
unþ1 2

1

Dt
þ

1

2Pe
72 2Vnþð1=2Þ:7þ

Dt

2
ðVn:7ÞðVn:7Þ

� �
un

� �

Njdxdy¼ 0; for j¼ 123

ð11Þ

Using the Gauss’s theorem, equation (11) can be written as:

Z
Ve

unþ1Nj

Dt
þ

1

2Pe

›unþ1

›x

›

›x
þ
›unþ1

›y

›

›y
2
›2unþ1

›z2

� �
Nj

� ��

2
unNj

Dt
2

1

2Pe

›un

›x

›

›x
þ
›un

›y

›

›y
2
›2un

›z 2

� �
Nj

� �

Dt

2
u 2 ›u

n

›x

›

›x
þ v2 ›u

n

›y

›

›y
2w 2 ›

2un

›z 2

� �
Nj

� �

þ unþð1=2Þ›u
n

›x
þ vnþð1=2Þ›u

n

›y
þwnþð1=2Þ›u

n

›z

� �
Nj

� �

þ
Dt

2
uv

›un

›x

›

›y
þuv

›un

›y

›

›x
22uw

›un

›z

›

›x
22vw

›un

›z

›

›y

� �
Nj

� ��
dxdy¼ 0;

for j¼ 123:

ð12Þ

Since, the boundary conditions for equation (3) are of either essential or zero-derivative
types, no boundary integral appears in equation (12).

Substituting the linear approximations for u n and u nþ1 from equation (10) into
equation (12) yields the following system of ordinary differential equations for the
typical element:
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MðeÞ

Dt
þ
KðeÞ

d

2Pe

 !
{u ðeÞ}nþ1

2
MðeÞ

2Pe

d2{u ðeÞ}nþ1

dz2
¼

MðeÞ

Dt
2
KðeÞ

d

2Pe
2ðKðeÞ

a þKðeÞ
bdÞ

 !
{u ðeÞ}

þ
1

2Pe
þ
Dt

2
w 2

� �
MðeÞd

2{u ðeÞ}n

dz 2

n

2ðwnþð1=2ÞMðeÞ2wDtKðeÞ
a Þ

d{u ðeÞ}n

dz

ð13Þ

where, M (e), KðeÞ
d , KðeÞ

a , and KðeÞ
bd are the mass, diffusion, advection, and balancing

diffusion matrices for the element, respectively, and {u ðeÞ} with the elements
u
ðeÞ
i ; for i ¼ 1 2 3; is the vector of nodal unknowns. The elements of the above

matrices, in terms of the local node numbers are given by:

MðeÞ
ij ¼

Z
Ve

N ðeÞ
i N ðeÞ

j dxdy ð14aÞ

KðeÞ
dij

¼

Z
Ve
ðN ðeÞ

i;xN
ðeÞ
j;x þ N ðeÞ

i; yN
ðeÞ
j; yÞdxdy ð14bÞ

KðeÞ
aij

¼

Z
Ve
ðunþð1=2ÞN ðeÞ

j;xN
ðeÞ
i þ vnþð1=2ÞN ðeÞ

j; yN
ðeÞ
i Þdxdy ð14cÞ

KðeÞ
bdij

¼
Dt

2

Z
Ve
ðu 2N ðeÞ

i;xN
ðeÞ
j;x þ v2N ðeÞ

i; yN
ðeÞ
j; y þ uvN ðeÞ

i;xN
ðeÞ
j; y þ uvN ðeÞ

i; yN
ðeÞ
j;xÞ dx dy;

for i; j ¼ 1 2 3:

ð14dÞ

The next step in the numerical solution of the energy equation is to discretize the system
of ordinary differential equations for the element (equation (13)) in the z-direction.
The finite difference method is employed for this purpose. To implement the method, the
vector of nodal unknowns for the element is expressed in terms of the global node
numbers as:

{u ðeÞ}l ¼

uI

uJ

uK

8>><
>>:

9>>=
>>;

l

; for l ¼ n; nþ 1 ð15Þ

where I, J, and K are the global node numbers of the element (Figure 2). The difference
quotients for the first and second derivatives of the dimensionless temperature with
respect to the z-coordinate in equation (13) can then be written in terms of the global node
numbers as:

du l
i

dz
¼

u l
iþnp 2 u l

i2np

2Dz
; i ¼ I ; J ;K ð16aÞ

d2u l
i

dz2
¼

u l
i2np 2 2u l

i þ u l
iþnp

Dz 2
; l ¼ n; nþ 1 ð16bÞ

where, np is the total number of nodes in each of the planes perpendicular to the
tube axis, and Dz is the distance between any two consecutive planes (Figure 2).
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Substituting expressions (16a) and (16b) into equation (13) yields, the following
fully-discretized form of the energy equation for the element:

MðeÞ

Dt
þ

KðeÞ
d

2Pe

 !
{ui}

nþ1
2

MðeÞ

2Pe

{ui2np 2 2ui þ uiþnp}nþ1

Dz2

¼
MðeÞ

Dt
2

KðeÞ
d

2Pe
2 ðKðeÞ

a þKðeÞ
bdÞ

 !
{ui}

n

þ
1

2Pe
þ

Dt w 2

2

� �
MðeÞ {ui2np 2 2ui þ uiþnp}n

Dz 2

2 ðwnþð1=2ÞMðeÞ 2 wDtKðeÞ
a Þ

{uiþnp 2 ui2np}n

2Dz

ð17Þ

where, i ¼ I, J, K, and all the matrices are written in terms of the global node numbers.
Subsequently, the algebraic equation (17) are assembled for the elements of the hybrid

mesh. The essential boundary conditions for the temperature are then applied. The
resulting system of algebraic equations is solved and the nodal values of temperature are
obtained at each time step. Having obtained the temperature distribution, the local and the
average Nusselt numbers are calculated from the following relations, respectively:

Nu ¼ 2
›u

›n

����
wall

¼ 2
X3

j¼1

›Nj

›n
uj ð18Þ

Nu ¼
1

2p

Z 2p

0

Nudw ð19Þ

where,›( )/›n is the normal derivative. Next, the velocity and the temperature distributions
for the ensuing time step are calculated in a similar manner. This procedure is continued
until steady-state conditions are developed.

4. Results and discussions
A hybrid finite difference-finite element scheme has been proposed and applied to the
solution of the energy equation in the three-dimensional, transient, and non-isothermal
fluid flow past over a circular tube. To discretize the energy equation, the proposed
hybrid scheme employes the two-dimensional finite element method in the x-y planes,
while the derivatives along the z-direction are approximated with the finite difference
quotients. The Taylor-Galerkin method has been utilized in order to stabilize the
discretization scheme for high Peclet numbers. The following discussions are identified
using D ¼ 0.01 m, Re ¼ 250, Pr ¼ 0.7, Tw ¼ 400 K and T1 ¼ 300 K as a test case.

4.1 The method validity
To demonstrate the validity of the numerical implementation, the following
three-dimensional, transient, convection-diffusion equation in a unit cube is considered:

›T

›t
þ a

›T

›x
þ b

›T

›y
þ c

›T

›z
¼ m

›2T

›x 2
þ

›2T

›y 2
þ

›2T

›z 2

� �
ð20Þ
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The exact, steady-state solution of equation (20) for the following boundary conditions:

Tð0;y;z; tÞ ¼
12 exp½ð y21Þb=m�

12 expð2b=mÞ

� �
12 exp½ðz21Þc=m�

12 expð2c=mÞ

� �
; Tð1;y;z; tÞ ¼ 0 ð21aÞ

Tðx;0;z; tÞ ¼
12 exp½ðx21Þa=m�

12 expð2a=mÞ

� �
12 exp½ðz21Þc=m�

12 expð2c=mÞ

� �
; Tðx;1;z; tÞ ¼ 0 ð21bÞ

Tðx;y;0; tÞ ¼
12 exp½ðx21Þa=m�

12 expð2a=mÞ

� �
12 exp½ð y21Þb=m�

12 expð2b=mÞ

� �
; Tðx;y;1; tÞ ¼ 0 ð21cÞ

and the initial condition:

Tðx; y; z; 0Þ ¼ 0 ð22Þ

is given by:

Taðx; y; z; tÞ ¼
1 2 exp½ðx2 1Þa=m�

1 2 expð2a=mÞ

� �
1 2 exp½ð y2 1Þb=m�

1 2 expð2b=mÞ

� �

�
1 2 exp½ðz2 1Þc=m�

1 2 expð2c=mÞ

� �
:

ð23Þ

Equation (20) for the specified boundary and initial conditions for a, b, c and m equal to
unity has been solved by the proposed hybrid method using three different meshes as
discussed earlier. Figure 4 shows the variation of L 2-norm of the error:

keko ¼

Z
V

ðTa 2 TÞ2dV

� �1=2

; V ¼ {0 # x; y; z # 1};

Figure 4.
Variation of the L 2-norm
of the error with respect to
the number of nodes for
equation (20)
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versus the number of nodes between the exact and the numerical solutions of equation
(20) for the steady-state case. Convergence of the numerical solution to the exact
solution of equation (20) with refining the hybrid mesh is apparent in the figure. These
results demonstrate the capability of the proposed hybrid method for solving
three-dimensional problems.

To compare the time duration for the proposed hybrid scheme with that of the
three-dimensional finite element method, consider the finest hybrid mesh used for the
results shown in Figure 4 with 1,331 nodes. The computational time for solving
equation (20) for 100 time steps using the hybrid scheme for this mesh is 2,800 s using
an Intelw – Pentiumw 4. This, versus 8,400 s for the three-dimensional finite element
method using four-noded tetrahedral elements for the same time step and nodes
performed with the same computer.

The principal reason for the lower computational time of the hybrid scheme is its
lower nodal connectivity compared to the three-dimensional finite element method.
For both the cases, the computer codes employed were unoptimized research versions,
and it is expected that optimization would improve the time efficiency.

4.2 Mesh independent study
Before settling with the final mesh, mesh independent studies have been performed for
solving the energy equation in non-isothermal flow passing over the tube. In this respect,
four different meshes with 2,816, 4,488, 7,216, and 8,107 nodes have been employed to
solve the energy equation. Owing to large gradients close to the tube surface, the meshes
have been refined in this region. In all the four cases, L/D was chosen to be equal to 12.

The solution of the energy equation is expressed in terms of the Nusselt number.
Figure 5 shows the variation of the average Nusselt number with respect to the number of
nodes. Convergence of the average Nusselt number to a unique value with mesh
refinement is clearly demonstrated in this figure; therefore, showing that for the mesh with
7,216 nodes or finer ones the results are mesh independent. Based on these observations,

Figure 5.
Variation of the average

Nusselt number with mesh
refinement for L/D ¼ 12
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the mesh with 7,216 nodes (consisting of 1,164 triangular elements in each x-y plane, and
36 divisions along the tube) is chosen for the heat transfer results to be presented in the rest
of this section.

4.3 Effects of the domain size
As stated previously, the fully-developed boundary conditions are applied at the outlet
plane. However, the domain length should be sufficiently large for these boundary
conditions to be applicable. To investigate the effect of domain size on the results,
numerical experiments have been carried out for different values of L/D.

Figure 6 shows the variation of the average Nusselt number with respect to the
domain length. Here, an effort was made to preserve the same mesh density for all the
cases presented in this figure. It is observed from the results that the average Nusselt
number tends to approach a constant value for L/D $ 12. Therefore, increasing the
length beyond 12 D does not have any tangible effects on the results. Hence, the
domain length has been chosen to be 12 times of the tube diameter in this study.

4.4 Heat transfer results
Having investigated some different aspects of the proposed hybrid scheme, the results
obtained by solving the energy equation for non-isothermal flow past over the tube
using this scheme are presented here for the domain length of 12 D, the mesh with 7,216
nodes, and a time step of 0.001. Having obtained the temperature distribution, the local
and the average Nusselt numbers are evaluated from relations (18) and (19), respectively.

Figures 7-9 show the distribution of local Nusselt number around the tube for some
of the planes perpendicular to the tube axis at different times. It is observed from
these results that the local Nusselt number is symmetric with respect to the plane
perpendicular to the y-axis which passes through the tube centerline. Moreover, the
local Nusselt number is also symmetric with respect to the mid-plane perpendicular to

Figure 6.
Variation of the average
Nusselt number for flow
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the tube axis (Figure 8). Applying the symmetric boundary conditions, the above
results were noticed.

Initially, the temperature gradients at the tube surface and also at the top and
bottom walls were large. Moreover, the boundary layers were thin and the flow pattern
was similar to that of the potential flow. Therefore, the Nusselt number was large
and its variations around the tube and along the z-direction were small (Figure 7).
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However, as time proceeds, the wake behind the tube grows in size; thus, the local
Nusselt number decreases moving from the front (w ¼ 08) to the back (w ¼ 1808) of the
tube (Figures 8 and 9). It should be noted that similar observations were made by
El-Shaboury and Ormiston (2005) and Chen et al. (1986) when conducting
two-dimensional simulations of non-isothermal flow past over cylinders. At a fixed
angle, the local Nusselt number decreases by moving in the z-direction towards the top
and bottom walls. This decrease is due to the reduction of the velocities in the
boundary layers near the walls. For a fixed value of z/H, the temperature gradient at
the tube wall decreases and the thickness of the boundary layers increases as time
proceeds. Therefore, the local Nusselt number approaches its minimum value which
occurs at the steady-state condition. These observations are in agreement with the
numerical results of Gowda et al. (1998) for an in-line tube bank.

Variations of the average Nusselt number with respect to z/H at two different times
and for the steady-state condition are shown in Figure 10. It is observed from this figure
that the largest average Nusselt number always occurs at the mid-plane, i.e. at z/H ¼ 0.5.

4.4.1 Effects of the tube length. To examine the effects of the tube length on the
results, computational domains with different values of H, namely, H ¼ 2D, 3D, and
6D, are considered. Based on physical observations, the effects of the top and bottom
walls on the flow field and, in turn, on the computed Nusselt number should decrease
as the tube becomes longer. Eventually, for large enough values of the tube length, the
two-dimensional results should be retrieved.

Figure 11 shows the variations of the steady-state local Nusselt number at the
mid-plane, z/H ¼ 0.5, with respect to the tube length. It is observed from the figure that
the local Nusselt number decreases with increasing the tube length. This decrease,
which is more significant in the front of the tube, is due to the decreasing velocities
outside the boundary layer, and the reduction in the temperature gradients at the top
and bottom walls.

Figure 9.
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The variations of the steady-state average Nusselt number with respect to the tube
length at the mid-plane is shown in Figure 12. It is clear from the figure that the
average Nusselt number decreases with increasing the tube length. For H/D greater
than six, the average Nusselt number converges to 7.1 which is the average Nusselt
number for the two-dimensional case for Re ¼ 250 and Pr ¼ 0.7 (McAdams, 1954).
Hence, demonstrating that for long tubes (H $ 6D), two-dimensional results can be
retrieved from the proposed three-dimensional scheme.
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5. Concluding remarks
A hybrid finite difference-finite element method has been introduced and applied to
solve the three-dimensional, transient energy equation for the non-isothermal fluid
flow past over a tube in a channel. The proposed hybrid scheme employes a
two-dimensional finite element method in the planes perpendicular to the tube axis;
while, the derivatives along the tube axis are discretized using the finite difference
technique. The Taylor-Galerkin method is used to obtain stable solutions for high
Peclet numbers.

To assess the performance of the hybrid scheme, the method was implemented on
some three-dimensional test cases. The L 2-norm of the error between the exact and the
numerical solutions were calculated for three different hybrid meshes. The results show
that the numerical solution converges to the exact solution with refining the mesh.
To compare the computational time of the hybrid scheme with that of the
three-dimensional finite element method, the three-dimensional finite element method
was applied to one of the test cases for the same time step and nodes using the same
computer. The results show that the computational time of the hybrid scheme is
approximately one-third of that for the three-dimensional finite element method. The main
reason for the lower computational time of the hybrid scheme is its lower nodal
connectivity compared to the three-dimensional finite element method. This characteristic
of the hybrid scheme is advantageous in the large-scale numerical simulations of
three-dimensional problems where the computational time duration is an issue.

Subsequently, the method was employed to simulate numerically the
three-dimensional heat transfer in the non-isothermal fluid flow passing over a
circular tube in a channel for Re ¼ 250, Pr ¼ 0.7, Tw ¼ 400 K and T1 ¼ 300 K. The
flow field was solved using the three-dimensional finite element method. Having
obtained the velocity field, the hybrid scheme was employed to solve the energy
equation. In this respect, mesh independent studies were performed and the effects of
the location of the outlet boundary on the results were investigated. Based on these

Figure 12.
Variation of the
steady-state average
Nusselt number with
the tube length for
z/H ¼ 0.5

H/D

N
u

0 2 4 6 8 10
6

6.5

7

7.5

8HFF
18,1

64



studies, the simulations were conducted for L/D ¼ 12 using the mesh with 7,216 nodes
for which the average and the local Nusselt numbers were calculated.

The results show that the Nusselt number decreases as w increases from 08 to 1808
and also by approaching the top and bottom walls. Furthermore, concerning the effects
of the tube length on the average Nusselt number, the results show that the Nusselt
number decreases with increasing the tube length, and for the tube length greater than
six times of the tube diameter the average Nusselt number converges to the value for
the two-dimensional case. In addition, the numerical experiments show that increasing
the domain length beyond 12D has insignificant effects on the results.

Altough much arduous and lengthy work for other aspects of the proposed method
implementation remain to be studied (on which some work are already being pursued),
based on the results obtained, the introduced numerical method in this present study
offers much ease for solving multi-dimensional problems specifically for those cases
where fluid-flow and heat- transfer interconnection analysis produce complexity, for
those cases involving too heavy nodal-bondings dependability, and of course, for those
cases which substantional computational time duration is a major drawback.

References

Arefmanesh, A. and Afkhami, S. (2001), “A Taylor-Galerkin/control volume model for the
simulation of heat transfer with phase change in a fluid flow”, ISME, Proceedings of 5th
International and 9th Annual Mechanical Engineering Conference, pp. 393-400.

Baer, T.A., Cairncross, R.A., Schunk, P.R., Rao, R.R. and Sackinger, P.A. (2000), “A finite element
method for free surface flows of incompressible fluids in three dimensions Part II dynamic
wetting lines”, International Journal for Numerical Methods in Fluids, Vol. 33, pp. 405-27.

Brooks, A.N. and Hughes, T.J.R. (1982), “Streamline-upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible
Navier-Stokes equations”, Computer Methods in Applied Mechanics and Engineering,
Vol. 32, pp. 199-259.

Cairncross, R.A., Schunk, P.R., Baer, T.A., Rao, R.R. and Sackinger, P.A. (2000), “A finite element
method for free surface flows of incompressible fluids in three dimensions Part I boundary
fitted mesh motion”, International Journal for Numerical Methods in Fluids, Vol. 33,
pp. 375-403.

Chen, B.F. (1998), “Hybrid three-dimensional finite-difference and finite-element analysis of
seismic wave induced fluid-structure interaction of a vertical cylinder”, Ocean
Engineering, Vol. 25, pp. 639-59.

Chen, C.K., Wong, K.L. and Cleaver, J.W. (1986), “Finite element solutions of laminar flow and
heat transfer of air in a staggered and an in-line tube banks”, International Journal of Heat
and Fluid Flow, Vol. 7, pp. 291-300.

El-Shaboury, A.M.F. and Ormiston, S.J. (2005), “Analysis of laminar forced convection of air
cross-flow in in-line tube banks with nonsquare arrangements”, Numerical Heat Transfer,
Vol. 48, pp. 99-126, Part-A.

Gowda, Y.T.K., Patnaik, B.S.V.P., Narayana, P.A.A. and Seetharamu, K.N. (1998), “Finite element
simulation of transient laminar flow and heat transfer past an in-line tube banks”,
International Journal of Heat and Fluid Flow, Vol. 19, pp. 49-55.

Heinrish, J.C. and Pepper, D.W. (1999), Intermediate Finite Element Method, Fluid Flow and Heat
Transfer Applications, Taylor and Francis, Philadelphia, PA.

Hybrid finite
difference-finite
element method

65



Launder, B.E. and Massey, T.H. (1978), “The numerical prediction of viscous flow and heat
transfer in tube banks”,ASMETransactions, Journal of Heat Transfer, Vol. 100, pp. 565-71.

McAdams, W.H. (1954), Heat Transmission, 3rd ed., McGraw-Hill, New York, NY.

Mashayek, F. and Ashgriz, N. (1995), “A hybrid finite-element-volume-of-fluid method for
simulating free surface flows and interfaces”, International Journal for Numerical Methods
in Fluids, Vol. 20, pp. 1363-80.

Morton, M.T.W. and Tony, W.H.S. (1997), “On a compact mixed-order finite element for solving
the three-dimensional incompressible Navier-Stokes equations”, International Journal for
Numerical Methods in Fluids, Vol. 25, pp. 513-22.

Passoni, G., Alfonsi, G. and Galbiati, M. (2002), “Analysis of hybrid algorithms for the
Navier-Stokes equations with respect to hydrodynamic stability theory”, International
Journal for Numerical Methods in Fluids, Vol. 38, pp. 1069-89.

Tezduyar, T.E. and Shih, R. (1991), “Numerical experiments on downstream boundary of flow
past cylinders”, Journal of Engineering Mechanics, Vol. 117, pp. 854-71.

Tiwari, S. and Biswas, G. (2003), “Numerical prediction of flow and heat transfer in a rectangular
channel with a built-in circular tube”, Journal of Heat Transfer, Vol. 125, pp. 413-21.

Usmani, A.S., Cross, J.T. and Lewis, R.W. (1992), “A finite element model for the simulations of
mould filling in metal casting and the associated heat transfer”, International Journal for
Numerical Methods in Engineering, Vol. 35, pp. 787-806.

Wong, K.L. and Baker, A.J. (2002), “A 3D incompressible Navier-Stokes velocity-vorticity weak
form finite element algorithm”, International Journal for Numerical Methods in Fluids,
Vol. 38, pp. 99-123.

Zhang, J. and Dalton, C. (1998), “A three-dimensional simulation of a steady approach flow past a
circular cylinder at low Reynolds number”, International Journal for Numerical Methods in
Fluids, Vol. 26, pp. 1003-22.

Corresponding author
A. Arefmanesh can be contacted at: a_aref32@yahoo.com

HFF
18,1

66

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints


